Using the NASA Planetary Data System of IOTA Asteroid Occultations

Tony George, Umatilla, Oregon USA David. W. Dunham, Greenbelt, Maryland, USA Dave Herald, Murrumbateman, Australia

Introduction

IOTA is working with the scientific community to ensure that our treasure trove of occultation observation data is safely stored and available for use by the scientific community into perpetuity. In this effort, David W. Dunham, Dave Herald, Eric Frappa, Tsutomu Hayamizu, John Talbot, J., and Brad Timerson once each year (or more often if needed) publish an updated database file that includes both a summary and detailed information about every observation ever made by IOTA observers. The data is published under the title: Asteroid Occultations V10.0. EAR-A-3-RDR-OCCULTATIONS-V10.0. NASA Planetary Data System, 2012. The data is found at the URL: http://sbn.psi.edu/pds/resource/occ.html.

If you access this link, you quite possibly might find the format and organization to be unrecognizable or even daunting to use. However, with some basic tutoring, the use of this database should be easily accessible by everyone in IOTA, as well as those in the scientific community that already know how to access such databases. This paper provides some rudimentary tutorials on how to access and use the database.

Veteran IOTA members may already access this information using Occult4 and hence may not need to ever access the NASA PDS. In fact, the PDS data is merely a reformatted version of the AsteroidObservations.dat file maintained within Occult4. .However, others do not regularly use Occult4 and therefore might find the use of the NASA PDS easier and more efficient. It is hoped that if you are in the latter category, you will find this paper of use.

Database Organization

The format used is the NASA Planetary Data System (PDS). This data set is intended to include all reported timings of observed asteroid, planet, and planetary satellite occultation events as well as occultation axes derived from those timings. The data is stored in Versions, with each new Version containing the data from previous versions, corrections to previous versions, and updates of the most recent data. The current V10.0 is complete and updated through February, 2012.

Details of reading the PDS files are explained at: <u>http://pdssbn.astro.umd.edu/howto/understand.shtml</u>

When you click on the URL where the data is stored:

http://sbn.psi.edu/pds/resource/occ.html; you will find a Root Directory containing the following files and folders:

- *aareadme.txt*: A brief text description of the file structure, much like what is shown below but with less detail.
- *catalog/*: A required directory containing files with very high-level information used to populate the central PDS catalog for searching. You typically will not need to access this subdirectory.
- *data/*: You will find the data files in a subdirectory called *data/*. Data sets will have multiple data directories under the root directory, named as follows:

0	occlist.lbl	column labels for asteroid occultation data
0	occlist.tab	asteroid occultation data
0	occsatlist.lbl	column labels for planetary satellite occultation data
0	occsatlist.tab	planetary satellite occultation data
0	occsatsummary.lbl	column labels for planetary satellite summary of
		occultations
0	occsatsummary.tab	planetary satellite summary of occultations
0	occsattime.lbl	column labels for planetary satellite occultation individual
		observer timings
0	occsattime.tab	planetary satellite occultation individual observer timings
0	occsummary.lbl	column labels for summary of occultations by asteroid
		number
0	occsummary.tab	summary of occultations by asteroid number
0	occtimings.lbl	column labels for asteroid occultation individual observer
		timings

o occtimings.tab asteroid occultation individual observer timings

Each of the above data directories are hypertext links if you are viewing this document in electronic format. Unspecified (blank) values are indicated by filling the field with 9s

- *document/:* An optional directory containing document files that provide detailed descriptions and explanations of various topics related to the data, like calibration procedures, instrument descriptions, observatory logbooks, etc.
- *index/:* A required directory containing files called *index.tab*, which contains the PDS manifest for the data set, and *checksum.tab*, which has MD5 checksums for everything in the data set. You typically will not need to access this subdirectory.
- *voldesc.cat*: A text file with technical volume description. You typically will not need to access this subdirectory.

Note for Windows Users

Files with an extension of .cat and are simple text files. If you are a Windows user you may have to force Windows to open them with a specific file editor, because Windows has reserved the .cat extension for security catalog files and gets nervous when ordinary users start messing with .cat files. Use the "Open with" right-click option in your Windows Explorer window to select an editor for viewing the files. Notepad and WordPad usually work well. If you're trying to look at a .cat file in Internet Explorer, you will be stymied by the browser. You will have to download the file (right-click and "Save target as") to your hard disk and then open it with any text editor. Alternately, you can use some browser other than IE. Google Chrome, for example, seems to be quite happy to display .cat files on Windows systems.

Using the Database

The most recent version of the database is always listed at the top. The easiest way to use the database is to 'Browse'. In this manner, you can see the data you want, highlight, cut and paste, or save the entire file if you wish. You may also 'Download' the database and save the entire file to your computer.

If browsing an occlist.tab file, the screen will look like this:

0001	1958-02-19	3	Juno	-	TYC	0110-00632-1	05	01	43.3782
0002	1961-10-02	2	Pallas	-	TYC	5237-01223-1	22	47	34.0622
0003	1975-01-24	433	Eros	-	HIP	37740	07	44	26.8960
0004	1977-03-05	6	Hebe	-	HIP	12706	02	43	18.2599
0005	1978-05-29	2	Pallas	-	HIP	84772	17	19	40.0315
0006	1978-06-07	532	Herculina	-	HIP	73350	14	59	23.1136
0007	1978-07-19	3	Juno	-	HIP	99050	20	06	36.2421
0008	1978-10-25	12	Victoria	-	TYC	6281-01615-1	18	49	44.2562
0009	1978-12-11	18	Melpomene	-	HIP	31694	06	37	51.5021
0010	1979-04-06	39	Laetitia	-	HIP	17040	03	39	10.8422

Note that the start of each line is a sequence number in chronological order (SEQ_NUM). This number is also used in the occtimings.tab file as shown below:

0001	1 P. Bjorklund/S. Muller, Malmo, SE	12.950000	55.580000	-9999 * -99999
0002	1 Uttar Pradesh S. Ob, Naini Tal, India	79.465833	29.387639	587 * -99999
0003	1 Phil Dombrowski, Newington, CT	-72.735556	41.669444	40 * -99999
0003	2 D. Yard, New Britain, CT	-72.766389	41.691667	60 * -99999
0003	3 D. R. Morrison, Unionville, CT	-72.882778	41.766111	100 * -99999
0003	4 R. Dragon, New Britain, CT	-72.812778	41.677778	100 * -99999
0003	5 R. Gurka, Burlington, CT	-72.925000	41.745000	100 * -99999

In the above case, the first and second sequential occultations recorded have only one observation each, while the third sequential occultation has multiple observations.

The occsummary.tab file will look like this:

1 Ceres	959.5 2.3	908.0 4.2	62.1 3.0	4	1984-11-13
1 Ceres	960.0 -99.9	960.0 -99.9	0.0 -99.9	2	2010-10-30
2 Pallas	553.5 1.6	528.4 3.9	-39.0 6.6	3	1978-05-29
2 Pallas	528.6 1.0	512.3 2.7	-31.7 4.3	4	1983-05-29
2 Pallas	531.8 34.1	-9999.9 -99.9	-9999.9 -99.9	2	2001-06-09
2 Pallas	515.0 -99.9	-9999.9 -99.9	-9999.9 -99.9	2	2006-06-12
3 Juno	289.6 1.1	249.5 2.2	80.5 1.7	4	1979-12-11
3 Juno	236.0 6.9	-9999.9 -99.9	-9999.9 -99.9	2	2000-05-24

The listing summarizes all the 'events' recorded for any asteroid, in order of asteroid number.

The .lbl files are important to understanding the column layout for each file. Here are two examples:

First the occlist.lbl file:

```
OBJECT
                                  = COLUMN
                                  = 1
COLUMN NUMBER
                                  = "SEQ_NUM"
NAME
                                  = "A unique sequence number for the
DESCRIPTION
      occultation event. This sequence number is used in the timings file
      as well, to identify which occultation a given observation pertains
      to."
                                  = "CHARACTER"
DATA TYPE
START BYTE
                                  = 1
BYTES
                                  = 4
FORMAT
                                  = "A4"
                                  = COLUMN
END OBJECT
```

Second the occtimings.lbl file:

OBJECT COLUMN_NUMBER NAME	= COLUMN = 3 = "SITE NAME"
DESCRIPTION	= "Name of the observing site. The name of
the observer is sometimes	included."
DATA_TYPE	= "CHARACTER"
START_BYTE	= 10
BYTES	= 37
FORMAT	= "A37"
END_OBJECT	= COLUMN

The occtimings.lbl example is for the third column of data. The column is labeled "Site Name". The column format is "CHARACTER". The column starts at the 10th byte in the row and runs for 37 bytes. While this level of detail is necessary for the proper parsing of the data files, a shortcut listing of all the column names for each .tab file are shown in Text Boxes 1, 2, and 3.

Issues If Running SKYPE

One curious thing when browsing the tables using Internet Explorer is that if you have Skype installed, Skype inserts annoying messages into the data:

ago -	6 2001-12-16 334 Chicago	TYC 0665-01037-1 03 58 03.3622 Th	nes
viana -	7 2001-12-19 712 Boliviana	тус 0717- 🕲 00435-1 06 04 56.5206 + 👝	
-	8 2001-12-21 569 Misa	TYC 1832-00585-1 04 56 56.5717	
viana -	9 2001-12-28 712 Boliviana	TYC 0716- S 00821-1 05 55 38.3875 + C	ick
lia -	0 2001-12-30 144 Vibilia	TYC 5258-00552-1 23 45 27.6358 to)

Call phone dialing scripts show up even if you quit Skype. The annoying embedded Skype messages can be eliminated by turning off Skype Click to Call feature in Internet Explorer. If other issues are found when using the NASA PDS, please report to Tony George <u>triastro@oregontrail.net</u> so this tutorial paper can be updated and issues reported to Dave Herald.

Acknowledgement

The authors would like to acknowledge Carol Neese with the NASA Planetary Data System for her help and cooperation in transferring the IOTA occultation data into the NASA PDS site and then checking the data for errors.

Text Box 1 -- occlist.lbl and occsatlist.lbl

Data Labels

- SEQ_NUM
 OBS_DATE
- 3. AST_NUMBER or
- SAT_DESIG
- 4. AST_NAME or SAT_NAME
- 5. PROV_DESIG (not used
- in occsatlist.lbl) 6. CATALOG STAR DESIG
- 7. STAR_RA_HOURS
- 8. STAR_RA_MINUTES
- 9. STAR_RA_SECONDS
- 10. STAR_DEC_SIGN
- 11. STAR_DEC_DEGREES
- 12. STAR_DEC_MINUTES
- 13. STAR_DEC_SECONDS
- 14. TIME_ZERO
- 15. AST_RA_MOTION
- 16. AST_RA_MOTION_2ND
- 17. AST_DEC_MOTION
- 18. AST_DEC_MOTION_2ND
- 19. AST_PARALLAX or SAT_PARALLAX
- 20. UPDATE_DATE
- 21. EDIT_DATE
- 22. STAR_V_MAG
- 23. AST_V_MAG or SAT_V_MAG
- 24. AST_DIAM or SAT_DIAM
- 25. ELLIPSE CENTER X
- 26. ELLIPSE_CENTER_Y
- 27. MAJOR_AXIS
- 28. MINOR_AXIS
- 29. MAJOR_AXIS_PA
- 30. STAR_SEP
- 31. STAR_PA
- 32. FIT_QUAL_CODE
- 33. MAJOR_AXIS_SD
- 34. MINOR_AXIS_SD
- 35. MAJOR_AXIS_PA_SD
- 36. STAR_SEP_SD
- 37. STAR_PA_SD
- 38. ELLIPSE_CENTER_X_SD
 39. ELLIPSE_CENTER_Y_SD
- 40. MISS_FLAG
- 41. MAJOR_FLAG
- 42. MINOR_FLAG
- 43. MAJOR PA FLAG
- 44. SEP FLAG
- 45. STAR_PA_FLAG
- 46. CIRC_FLAG
- 47. PLOT_UT
- 48. GEO_EVENT_X
- 49. GEO_EVENT_Y
- 50. GEO_CONJ_X
- 51. GEO_CONJ_Y
- 52. GEO_CONJ_DIST
- 53. CONJ_TIME
- 54. GEO_CONJ_SEP
- 55. GEO_CONJ_PA
- 56. CONJ_SEP_ERROR
- 57. CONJ_TIME_ERROR

Text Box 2 -occsummary.lbl and occsatsummary.lbl Data Labels

- 1. AST_NUMBER or SAT_DESIG
- 2. AST_NAME or
- 3. MAJOR AXIS
- 4. MAJOR_AXIS_SD
- 5. MINOR_AXIS
- 6. MINOR_AXIS_SD
- 7. MAJOR_AXIS_PA
- 8. MAJOR_AXIS_PA_SD
- 9. FIT_QUAL_CODE
- 10. OBS_DATE

Text Box 3 – occtimings.lbl and occsattime.lbl Data Labels

- SEQ_NUM
 SITE INDEX
- 3. SITE NAME
- 4. SITE_LONG
- 5. SITE_LAT
- 6. SITE_ALT
- 7. DATUM_CODE
- 8. TEL_APERTURE
- 9. TEL_TYPE
- 10. STABILITY
- 11. TRANSPARENCY
- 12. TIME_SOURCE
- 13. DISAPP_TIME
- 14. DISAPP_EVENT_CODE
- 15. DISAPP_TIME_ACC
- 16. DISAPP_PE
- 17. DISAPP_TIME_WEIGHT
- 18. REAPP TIME
- 19. REAPP_EVENT_CODE
- 20. REAPP_TIME_ACC
- 21. REAPP_PE
- 22. REAPP_TIME_WEIGHT
- 23. METHOD_CODE
- 24. PLOT_CODE
- 25. TIME_ADJ
- 26. COMMENT